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Abstract 

Objective: Shapley additive explanations (SHAP) is a popular post-hoc technique for 

explaining black box models. While the impact of data imbalance on predictive models 

has been extensively studied, it remains largely unknown with respect to SHAP-based 

model explanations. This study sought to investigate the effects of data imbalance on 

SHAP explanations for deep learning models, and to propose a strategy to mitigate these 

effects. 

Materials and Methods: We propose to adjust class distributions in the background and 

explanation data in SHAP when explaining black box models. Our data balancing 

strategy is to compose background data and explanation data with an equal distribution of 

classes. To evaluate the effects of data adjustment on model explanation, we propose to 

use the beeswarm plot as a qualitative tool to identify "abnormal" explanation artifacts, 

and quantitatively test the consistency between variable importance and prediction power. 

We demonstrated our proposed approach in an empirical study that predicted inpatient 

mortality using the Medical Information Mart for Intensive Care (MIMIC-III) data and a 

multilayer perceptron. 

Results: Using the data balancing strategy would allow us to reduce the number of the 

artifacts in the beeswarm plot, thus mitigating the negative effects of data imbalance. 

Additionally, with the balancing strategy, the top-ranked variables from the 

corresponding importance ranking demonstrated improved discrimination power. 

Discussion and Conclusion: Our findings suggest that balanced background and 

explanation data could help reduce the noise in explanation results induced by skewed 

data distribution and improve the reliability of variable importance ranking. Furthermore, 
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these balancing procedures improve the potential of SHAP in identifying patients with 

abnormal characteristics in clinical applications. 

 

Keywords: Interpretable machine learning, SHAP, data imbalance, decision making 

 

1 Background and Significance 

As deep learning models become increasingly popular, interpretability remains a barrier 

to their adoption, as these black boxes maintain an opaque relationship between input and 

output. Lack of interpretability constrains models' acceptance among users and raises 

legal and ethical concerns, especially in the clinical field1. To improve the interpretability 

of deep learning models, inherently interpretable models can be developed using 

techniques such as knowledge distillation2, which often involves trade-offs between 

predictivity and interpretability3. In contrast, post hoc explanations provide a certain 

degree of interpretability to deep learning models without impairing their high predictive 

accuracy.  

 

Several popular post hoc explanation methods are available for deep learning models. 

The Shapley additive explanations (SHAP)4 family is widely used. Based on the Shapley 

value in game theory5, SHAP is closely related to other post hoc methods such as Local 

Interpretable Model-agnostic Explanations (LIME)6, Deep Learning Important FeaTures 

(DeepLIFT)7, 8 and integrates gradients9. SHAP quantifies variable attributions for each 

observation, yielding local explanations that measure the influence of each variable on 

the prediction outcome. The global variable importance10, i.e., the overall contribution of 
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each variable to the model, can be derived from the mean absolute SHAP values across 

observations4.  

 

Model explanations using SHAP have been widely adopted11-17. SHAP values provide 

users with practical information, such as which variables should receive more attention in 

clinical practice. Additionally, important variables may be prioritized for the construction 

of lite models, with SHAP values serving as a variable selection method for high-

dimensional inputs16. As a local explanation method, SHAP produces variable 

contributions exclusively for the observations supplied by users. Ideally, these 

observations, which are known as the explanation data, should be representative of all 

possible predictor profiles, allowing the explanation results to express comprehensively 

how variables might influence predictions. Similarly, the background data required for 

SHAP value calculation should also provide comprehensive prior information for model 

reference and replacement of missing values4. According to our knowledge, existing 

research on SHAP has paid little attention to the background and explanation data. A 

simple feed of the entire dataset or a random subset may be insufficient to deal with 

unbalanced datasets, e.g., medical datasets that are often intrinsically unbalanced due to 

rare events18, 19.  

 

Although there is evidence that data imbalance impairs model prediction performance20, 

and many solutions have been proposed21-23, its effects on model explanations via SHAP 

have largely been neglected. Data imbalance is typically characterized by highly unequal 

distributions among its classes24. With a binary outcome, data imbalance refers to a 
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situation where the majority class (i.e., the predominant class of outcome) substantially 

outnumbers the minority class. This imbalance raises the concern that noise may be 

introduced into explanations due to the majority's dominance and the extremely limited 

information about the minority class, thus impairing interpretation. In SHAP applications, 

we hypothesize that unbalanced background and explanation data will lead to explanation 

bias, which will negatively impact variable contributions – a critical consideration in 

many clinical studies1, 13-15. Additionally, we anticipate that by balancing background 

data and manipulating explanation data appropriately, we may improve SHAP 

explanations and distinguish meaningful signals from noise.  

 

In this study, we examine the effects of background data and explanation data on SHAP-

based explanations for deep learning models, and demonstrate our proposed solutions 

using the Medical Information Mart for Intensive Care (MIMIC-III)25 database. This 

study seeks to provide empirical evidence regarding the impact of data imbalance on 

SHAP-based interpretability, which could help guide future choices of background and 

explanation data and offer a practical supplement for SHAP applications. 

 

2 Materials and Methods 

In this section, we describe how SHAP explains deep learning models and present a 

balancing strategy for background and explanation data. Thereafter, we elaborate the 

process for evaluating the effects of data adjustments. Lastly, we demonstrate how this 

data balancing strategy can be implemented in practice using the MIMIC-III data. 
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We follow the common practice when developing and explaining a deep learning model, 

where we apply the hold-out method to divide the data into non-overlapping training set, 

validation set, and test set, stratified by the outcome. Since this study focuses on model 

explanation, we assume the deep learning model has been trained using the training set 

and fine-tuned using the validation set.  

 

2.1 Explaining deep learning models with SHAP 

SHAP considers the attribution of variable effects to be confounded rather than isolated1, 

hence accounting for the interaction between variables. Predictions of black box models 

are explained as a linear combination of individual variables' contributions, which is 

easily understood and validated by users who may not have expertise in machine 

learning. 

 

SHAP employs a variety of algorithms for deep learning models to measure variable 

contributions. Kernel SHAP is a model-agnostic approximation that is not tied to any 

specific type of model. Gradient SHAP supports differentiable models including deep 

learning models and some machine learning models like support vector machine. Deep 

SHAP, adapted from DeepLIFT algorithm7, is another popular explainer, which is 

specifically designed for deep learning models. This study will utilize Deep SHAP for 

demonstration since it is efficient in approximation and tailored for deep learning models. 

 

For computing SHAP values, researchers usually specify a subset of the entire dataset as 

the background data to approximate the expected values of the majority and minority 
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classes. By summing variables' contributions (i.e., SHAP values) for an observation, we 

can determine the deviation of the model's prediction from the average (expected) value. 

Essentially, the background data provides the SHAP explainer with the prior information 

about the population, thereby influencing the final SHAP values. With the dominance of 

the majority class, an unbalanced background data will lead to a much lower baseline for 

observations in the minority class, and probably lead to overestimate their SHAP values, 

as SHAP describes the differences between the prediction and average value4. 

 

When a SHAP explainer is constructed with the model and background data, it will be 

applied to the explanation data and used to explain user-specified observations where the 

corresponding SHAP value for each variable can be derived. The choice of explanation 

data directly affects both the local explanations and the global importance ranking. When 

explanation data are unbalanced, the explanation results may be dominated by the 

majority class, obscuring the explanations from the minority class.  

 

2.2 Balancing the background and explanation data 

In the case of a black box model, the negative effects of data imbalance on model 

explanations may be offset by appropriate background and explanation data in SHAP. 

The minority-overall rate, defined as the ratio of minority cases to all cases, serves as a 

measure of data imbalance. Several strategies have been considered to sample 

background data, including the use of the entire test set14, the entire training set16 or 

external balanced data12, 17 instead of the existing training, validation or test sets. For the 

explanation data, under-sampled balanced validation set15 and the whole training set13 
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have been explored. We sample background data from the training set that contained the 

most population in the cohort in order to provide comprehensive prior information for the 

SHAP explainer, and compose explanation data from the validation set to guarantee no 

overlap with background data. The test set is preserved for evaluating the SHAP 

explanations after these adjustments. 

 

The first step is to deal with data imbalance in the background data, since it provides 

prior information on variable distribution that is critical to calculating SHAP values. To 

generate a set of background data with a fixed size, N, from the training set, a simple 

random sampling yields the same minority-overall rate p
0
 as in the original data. We 

propose to balance the background data to a higher minority-overall rate of  p
0
< p ≤ 0.5, 

through a random selection of Np observations from the minority class and N(1-p) 

observations from the majority class. As p increases, more attention will be drawn to the 

minority class when explaining the fitted model. Previous studies12, 17 suggest that p = 0.5 

is an appropriate choice.  

 

Next, we apply under-sampling26-28 to the validation set to compose the explanation data, 

in which we select all samples from the minority class, but only a fraction of the majority 

class. In this way, the minority-overall rate is increased to the same level as in the 

background data, ensuring that the distribution conforms to the prior information. While 

over-sampling (i.e., repeated sampling or synthesis of observations for the minority class) 

is a simple yet effective data balancing strategy, under-sampling is generally preferred in 

the medical field for two reasons: (1) explanation results would be more persuasive 
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without synthetic data for the explanation, and (2) the reduction in the number of 

explanation data could save significant computation time. One potential limitation of 

under-sampling is the possibility of information loss in the majority class26. We address 

this problem by applying a K-means-based under-sampling approach, in which we 

perform clustering analysis on the observations in the majority class to capture group 

patterns. The number of cases to be randomly selected from each cluster will be equal, 

and for clusters with insufficient patients, all cases will be selected. We use the elbow 

method to determine the number of clusters, where we simultaneously minimize within-

cluster variability and the number of clusters29. 

 

2.3 Evaluating the effects of adjustments to the background and explanation Data 

For each combination of background and explanation data, we can generate 

corresponding SHAP values. Then we evaluate the effects in two ways: (1) qualitatively 

examining the beeswarm plot from SHAP, and (2) quantitatively assessing the predictive 

ability of models that use only the top few most important variables selected by SHAP. 

These two aspects of evaluation are consistent with the two dimensions of variable 

importance – explanatory and predictive30. 

 

2.3.1 Qualitative analyses 

For qualitative validation, we use the beeswarm plot, which shows both global and local 

explanations. As visualized in the plot, the color of the dots and the SHAP values 

indicated by the x-axis can illustrate the association between the variable's value (e.g., 

age by year) and contribution (e.g., age's corresponding SHAP value). The spread of the 
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dots displays the variance of the variable's overall contribution, and the distribution of the 

data points can be examined to detect abnormal patterns. In the y-axis, the order of 

variable importance is determined by the mean of absolute SHAP values over all 

explanation observations as a heuristic measure of global variable importance. The 

beeswarm plot may be easily generated using the SHAP Python package4. 

 

2.3.2 Quantitative analyses 

Qualitative analyses focus on the beeswarm plot, which is critical for SHAP applications. 

Quantitatively, we focused on the importance ranking, where the variable importance is 

generated by the mean absolute variable contributions across the observations in the 

explanation data. We tested the predictive ability of top k (k = 3, 4, …20) variables, 

assuming that top k variables from a good ranking would have higher predictive power 

than top k variables from a poor ranking. For a specific k, we build models using the top k 

variables from the importance rankings before and after adjusting the background and 

explanation data. These models are in the same architecture and with the same hyper-

parameter selection strategy, and the only difference is the input, i.e., top-k variables from 

different importance rankings. Then we compare their discriminative ability in terms of 

AUC, using the bootstrapping method to compute 95% confidence intervals (CI). 

 

2.4 Experiments 

We conducted an empirical study using the MIMIC-III database, which is a publicly 

available critical care dataset obtained from the intensive care units (ICUs) of the Beth 

Israel Deaconess Medical Center (BIDMC) between 2001 and 2012. It contains de-
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identified information on 44,918 patients.25 The ratio used in dataset splitting was 7:1:2 

for composing training, validation and test sets. Twenty-one continuous variables were 

used for analysis, including patient demographics, vital signs, and laboratory tests. The 

outcome was binary (death or survival), with a mortality rate of 8.8%. In this manner, the 

dataset was unbalanced, with patients who died forming the minority class and patients 

who survived constituting the majority class. 

 

After constructing the deep learning model that will be explained, i.e., multilayer 

perceptron (MLP) in this study, we first created background datasets of fixed size with 

varying minority-overall rate (p) of 0.088 and 0.5. The minority-overall rate of 0.088 

(i.e., the original event rate) was considered a reference point. By increasing p to 0.5, the 

majority and minority classes held almost equal baselines for the computation of SHAP 

values. Following that, for each background, we examined two versions of the 

explanation data: (1) the original validation set with a minority-overall rate equal to the 

event rate of 0.088, and (2) an under-sampled validation set with the same minority-

overall rate as the background data.  

 

To enable convenient application, we provide a Python library named "BalanceSHAP"31 . 

Through this library, the procedures of composing background and explanation data can 

be easily implemented. It also inherits computation and plotting methods from the 

original SHAP library4, providing a convenient interface for SHAP calculation, especially 

in the scenario of data imbalance.  
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3 Results 

This section describes the model implementation and reports the qualitative and 

quantitative evaluation results for adjustments made to the background and explanation 

data in SHAP.  

 

3.1 Model implementation 

We constructed an explanation model comprising of four linear layers activated by 

rectified linear units (ReLU), two dropout layers, and an output layer with a Sigmoid 

activation function. We optimized the model by minimizing the cross-entropy loss, using 

weights of [0.92, 0.08] for the minority (mortality) and majority (survival) classes, 

respectively. The learning rate was set to 0.01 in the experiment of 200 epochs. On the 

test set, this model achieved an AUC of 0.827 (95% CI: 0.814 – 0.841). 

 

3.2 Qualitative evaluation results 

We begin with examining the impact of the adjustments to background data on SHAP 

values, where the original validation set was used as the explanation data. Next, we 

assessed the additional impact of balancing explanation data on model explanations. 

 

3.2.1 SHAP with original and balanced background dataset 

Using the original validation set as explanation data, Figure 1 compares the beeswarm 

plots generated based on unbalanced (with a minority-overall rate of 0.088; see Figure 

1a) and balanced background data (with minority-overall rates of 0.5; see Figure 1b). 

While we observed variations in the variable importance ranking, the most and least 
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important variables remained relatively constant, such as blood urea nitrogen (BUN), age, 

and oxygen saturation (SpO2).  

 

There were several abnormal points (see points a-n in Figure 1b) in the SHAP values 

based on the unbalanced background data that were inconsistent with the overall 

association between variable value and its contribution towards the prediction, i.e., SHAP 

value. As an example, point b is an "abnormal point" when interpreting the importance of 

age, as it is inconsistent with the general trend where old age contributed positively to 

mortality. This abnormality may arise due to two reasons: genuine outlying observation 

for particular patients that warrant further investigation, or inaccurate SHAP values that 

require correction before interpretation. Generally, the abnormal points a-n (except points 

i, m, and l) were removed after balancing the background data (see Figure 1b), thereby 

improving the understanding of the association and interpretation. Nevertheless, some 

abnormal points (for example, points i, m, and l in Figure 1) remained, which could be 

addressed in the subsequent adjustments made to the explanation data.  

 

3.2.2 SHAP with original and balanced explanation datasets 

Subsequently, we examined the benefits of adjusting the explanation data to match the 

minority-overall rate in the background data, such that the data to be explained is 

consistent with the prior information provided to SHAP. For the K-means-based under-

sampling, the number of clusters was determined as three by the elbow method32. Using 

the balanced background data, we compared the beeswarm plots generated by unbalanced 

(original validation set, with a minority-overall rate of 0.088; see Figure 2a) and balanced 
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(under-sampled, with a minority-overall rate of 0.5; see Figure 2b) explanation data. 

Apart from the effects of the balanced background, Figure 2b displays the trend patterns 

more clearly for potassium and diastolic blood pressure. As compared to Figure 2a, points 

i and m have been corrected; however, point l (for chloride) remains unchanged.  

 

An examination of chloride further revealed that point l had the fourth-highest chloride 

level (0.723, top 0.25%), with the corresponding SHAP value significantly greater than 

other observations with top-10 chloride levels. In addition, for point l, when we replaced 

its chloride level with that of the most similar observation among the explanation data 

(0.571, top 22.5%), while retaining all other variable values, the SHAP value for chloride 

became negative, consistent with other observations with high chloride values. These 

results suggest that point l likely represents a true outlier in the data that was identified 

through visualization only after removing the noise induced by data imbalance.   

 

3.3 Quantitative evaluation results  

The qualitative evaluation revealed local changes in SHAP values after adjusting the 

background and explanation data. We then quantitatively evaluated the impact of 

corresponding global changes, i.e., changes in variable importance ranking, by assessing 

the predictive performance of models constructed with top-ranked variables. Figure 3 

displays the AUC values for MLP models built with top k (k = 3, 4, …, 20) variables 

which were extracted from SHAP-based importance rankings. These importance rankings 

were obtained using background datasets with minority-overall rates of 0.088 and 0.5, 

respectively, with and without under-sampling the explanation data to the same minority-
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overall rate. The minority-overall rate of 0.088, which was the event rate in the original 

data, served as the baseline for comparison.  

 

When both background and explanation data were balanced, we found that MLPs 

constructed with top-ranked variables generally outperformed models built based on the 

original unbalanced data. Additionally, the program running time could be significantly 

reduced with the balanced explanation data, as compared to the unbalanced version (3.72 

minutes vs 17.07 minutes, run on the Windows 11 system with Intel Core i5 Processor 

with 4 cores and 1.60GHz, 16GB RAM), since the computation time increases linearly 

with the sample size of the explanation data (sample size 1,579 vs 8,982). 

 

4 Discussion 

This study highlighted the impact of data imbalance (a common phenomenon in clinical 

applications) on explaining black box models via SHAP and proposed a balancing 

strategy for background and explanation data to offset the impact, which was 

qualitatively and quantitatively evaluated. The balancing strategy can eliminate 

ambiguous information resulting from data imbalance and provide a more precise 

explanation, leading to trustworthy clinical insights in decision-making. Moreover, this 

balancing strategy enables researchers to develop parsimonious models with reasonable 

performance and improved interpretability by choosing variables with high predictability 

from the importance ranking. To aid the implementation of the balancing strategy and 

calculation of SHAP values, we have developed the BalanceSHAP Python library31 to 

assist researchers using SHAP in the case of data imbalance. 
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Data imbalance can result in inaccurate SHAP explanations, which appears as abnormal 

points on the beeswarm plot that deviate significantly from the general trend of 

association between variable values and corresponding SHAP values. The trends in the 

beeswarm plot have been found useful for interpreting prediction models in clinical 

settings, with occasional abnormal points being ignored1, 13, 33. When multiple abnormal 

points are observed for a variable, especially when they present strong impacts on the 

outcome (e.g. points a-g in Figure 1), it becomes difficult to interpret the overall 

influence of this variable on the outcome or to anticipate the outcome of a clinical 

intervention based on this variable1, 33. As demonstrated in our empirical study, balancing 

the background and explanation data reduced abnormal points caused by data imbalance, 

hence reducing confusion and incorrect interpretation. 

 

Apart from erroneous abnormal points that arise from inaccurate SHAP values due to 

imbalance and hinders decision-making, some abnormal points may indicate genuine 

outliers in the dataset that provide useful information for further analysis34. Since the 

background and explanation data only influence the computation of SHAP values4, their 

adjustments can minimize erroneous abnormal points but has little impact on the genuine 

ones, e.g. point l that persisted in Figures 1 and 2 despite various data adjustments. By 

relieving confusion caused by the first type of abnormal points, this balancing strategy 

may prove useful in identifying patients with concerning conditions35 (i.e. the second 

type) in clinical applications, allowing for more personalized interventions.  
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Another benefit of our proposed balancing strategy is the reduction in the size of 

explanation data and hence computation time. Using a large dataset (such as the entire 

training set13) as the explanation data may seem logical, but it can be extremely time-

consuming4. This study proposed to apply the widely used K-means-based under-

sampling26-28 to balance the smaller validation set and capture the representative patterns 

in the majority class, and then use it to generate local explanations. In this manner, the 

time-consuming problem is mitigated without adversely affecting the explanation results 

or the predictive ability of the top-ranked variables. By using the K-means-based method 

to capture the profiles of the majority class, we can control the size of the explanation 

data without losing information for explanations.  

 

As a result of our proposed balancing procedures, the SHAP-based variable ranking is 

more aligned with variable contribution to predictions, as reflected in the improved 

predictive performance of models based on the top few variables. In this way, this 

balancing strategy enhances the variable importance assessment in the dimension of 

predictivity36. Selecting the top variables in the post-balanced importance ranking allows 

researchers to develop well-performing predictive models with fewer predictors, which is 

especially valuable in clinical studies that favor simple models over complex ones to 

enhance interpretability37, 38. 

 

Except for the balanced background and explanation data, we also used those with 

minority-overall rate p < 0.5. According to eTable 1, we observed that based on the same 

background data, both versions of explanation data, that is, the original and under-
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sampled validation set, gave comparable quantitative results of AUC. With p increasing 

to 0.5, the corresponding top-ranked variables tend to have greater predictive power, 

suggesting our proposed balancing strategy is superior than using background and 

explanation data with a random minority-overall rate. 

 

Although we only presented results for Deep SHAP in the main analysis, our method also 

applies for Gradient SHAP. In an additional analysis, we explained the same MLP model 

trained on our dataset using Gradient SHAP and presented the results in the 

supplementary material (eFigure 1-3). Gradient SHAP is more time-consuming than 

Deep SHAP, since it builds many sub-models from scratch within the explainer in order 

to calculate the variable contributions, whereas Deep SHAP acts in the way of 

approximation utilizing DeepLIFT. As the background data matters to DeepLIFT7, it also 

matters to Deep SHAP, and hence, the data imbalance can have a more dramatic effect on 

the explanation results than with Gradient SHAP, as shown in eFigure 1.  Furthermore, 

we highlight that our proposed adjustments to Deep SHAP and Gradient SHAP are not 

specific to the explanation of MLP, but are generally applicable to SHAP explanation of 

any deep learning models. 

 

In the event of data imbalance, SHAP has been widely applied without adjustment for 

model explanation in many medical applications13, 14, 16. However, our study demonstrates 

that the issue of data imbalance may lead to unreliable model explanations, just as it does 

for model predictions. BalanceSHAP is an easy-to-use and lightweight tool designed to 

assist researchers in finding more plausible explanations in the case of data imbalance. 
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This Python library, complementary to SHAP, can be useful to visualize additional 

information on interpretation, such as variable outliers, which is especially valuable in the 

face of high-dimensional input of black box models. 

 

There are several limitations to this study. First, we focused on structured health data. 

The effects of data imbalance on model explanation may differ from data types such as 

image data, which are worth exploring in the future. Second, we only set one optimized 

model for explanation with the uncertainty for variable importance. Lastly, we only 

applied beeswarm plot examination and testing ability comparison to evaluate 

explanation results. Further research may extend to other dimensions, such as SHAP-

based partial dependence and pivot plots.  

 

5 Conclusion 

In this empirical study, we demonstrated that in the presence of the data imbalance, 

balanced background and explanation data improved SHAP's explanation results in terms 

of reducing the data imbalance-induced "abnormal points" in the beeswarm plot and 

enhancing the predictive ability. Our proposed BalanceSHAP can be particularly valuable 

in the medical field, where data imbalance is a prevalent problem.  
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Figure 1 Comparison of beeswarm plots based on (a) unbalanced background data, with a minority-overall rate of 0.088 

and (b) balanced background data, with a minority-overall rate of 0.5.  

  

Based on the same explanation data, when the background minority-overall rate was changed to 0.5, ranks for variables 

anion gap, temperature, hemoglobin, creatinine, and chloride were dropped, while ranks for heart rate, systolic blood 

pressure, lactate, platelet, diastolic blood pressure, and mean blood pressure were raised. For points a-n, the "outliers" of 

trend in the (a) were amended in (b), except for "outliers" points i, m, and l. BUN, blood urea nitrogen; SpO2, peripheral 

capillary oxygen saturation. 
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Figure 2 Comparison of beeswarm plots based on (a) unbalanced explanation data, which was the original validation set 

and without under-sampling and (b) balanced explanation data, which was the under-sampled validation set.  

 

Based on balanced background data i.e. minority-overall rate of 0.5, with a balanced explanation data, ranks for variables 

heart rate, anion gap, bicarbonate, potassium, diastolic blood pressure, and mean blood pressure were lowered down. In 

contrast, ranks for systolic blood pressure, temperature, creatinine, white blood cell, and chloride were raised. For points i 

and m, the "outlier" in the (a) were amended in the right panel due to the adjustment on explanation data, while "outlier" l 

remains in the plot. The sub-figure (a) here is the same as sub-figure (b) in the Figure 1. BUN, blood urea nitrogen; 

SpO2, peripheral capillary oxygen saturation. 
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Figure 3 Comparison of predictivity performance for MLPs built with top variables yielded by unbalanced background 

and explanation data (black) and balanced background and explanation data (blue). 

 

The unbalanced background and explanation data have a minority-overall rate of 0.088, the same as the event rate, and 

the balanced background and explanation data have a minority-overall rate of 0.5.
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Supplementary Materials 

 

eTable 1. AUC for MLP models built by Top k (k = 3, 4, …, 20) variables from importance rankings produced by SHAP 

values using background minority-overall rates of 0.088, 0.2, 0.3, 0.4, and 0.5, with or without under-sampling for 

explanation data. 

  

Original 

Minority-overall rate = 0.2 Minority-overall rate = 0.3 Minority-overall rate = 0.4 Minority-overall rate = 0.5  

  No US US No US US No US US No US US 

Top 3 0.733 0.736 0.736 0.736 0.736 0.736 0.736 0.747 0.747 

Top 4 0.756 0.753 0.753 0.753 0.748 0.756 0.748 0.770 0.770 

Top 5 0.772 0.770 0.763 0.766 0.763 0.766 0.763 0.778 0.775 

Top 6 0.785 0.785 0.782 0.785 0.782 0.785 0.787 0.784 0.787 

Top 7 0.793 0.793 0.787 0.794 0.794 0.794 0.800 0.795 0.800 

Top 8 0.801 0.801 0.801 0.801 0.801 0.806 0.806 0.806 0.806 

Top 9 0.812 0.812 0.812 0.812 0.812 0.812 0.812 0.812 0.812 

Top 10 0.811 0.811 0.814 0.813 0.814 0.813 0.814 0.814 0.814 

Top 11 0.814 0.814 0.821 0.814 0.820 0.821 0.820 0.821 0.820 

Top 12 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 

Top 13 0.827 0.827 0.826 0.827 0.826 0.827 0.826 0.827 0.826 

Top 14 0.830 0.830 0.830 0.830 0.830 0.830 0.830 0.830 0.830 

Top 15 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 

Top 16 0.830 0.830 0.830 0.830 0.830 0.830 0.830 0.830 0.830 

Top 17 0.830 0.830 0.830 0.830 0.830 0.830 0.830 0.829 0.830 

Top 18 0.831 0.831 0.831 0.831 0.831 0.831 0.831 0.830 0.831 

Top 19 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833 

Top 20 0.830 0.830 0.830 0.830 0.830 0.830 0.830 0.830 0.830 

The value(s) in bold is (are) the top values in each row. The shaded cells show the results yielded with balanced 

background data containing all bold values for Top 3-4 and half of the bold values for Top 5-11. Minority-overall rate: 
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minority-overall rate on background data; US: under-sampling for explanation data, when the background data was with 

the minority-overall rate of 0.5, under-sampled version of explanation data was with a minority-overall rate of 0.5, and 

then both of them could be considered as balanced. 
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eFigure 1 With Gradient SHAP, Comparison of beeswarm plots based on (a) unbalanced background data, with a minority-

overall rate of 0.088 and (b) balanced background data, with a minority-overall rate of 0.5.  

  

Based on the same explanation data, when the background minority-overall rate was changed to 0.5, ranks for variables anion 

gap, temperature, and hemoglobin were dropped, while ranks for lactate was raised. For points a-e, the "outliers" of trend in the 

(a) were amended in the (b). The "outliers" remain in the panels for points b and d. The sub-figure (a) here is the same as sub-

figure (b) in the eFigure 1. BUN, blood urea nitrogen; SpO2, peripheral capillary oxygen saturation. 
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eFigure 2 With Gradient SHAP, Comparison of beeswarm plots based on (a) unbalanced explanation data, which was the 

original validation set and without under-sampling and (b) balanced explanation data, which was the under-sampled validation 

set.  

 

Based on balanced background data i.e. with a minority-overall rate of 0.5, with a balanced explanation data, ranks for variables 

anion gap, temperature, creatine and bicarbonate were lowered down. In contrast, ranks for respiration rate, heart rate, systolic 

blood pressure, and platelet were raised. For points b and d, the "outliers" in (a) were amended in (b) due to the adjustment of 

explanation data. BUN, blood urea nitrogen; SpO2, peripheral capillary oxygen saturation. 
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eFigure 3 With Gradient SHAP, comparison of predictivity performance for MLPs built with top variables yielded by 

unbalanced background and explanation data (black) and balanced background and explanation data (blue). 

 

The unbalanced background and explanation data have a minority-overall rate of 0.088, the same as the event rate, and the 

balanced background and explanation data have a minority-overall rate of 0.5. 

 


